Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Muscle Nerve ; 69(4): 403-408, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38294062

RESUMO

INTRODUCTION/AIMS: There is a dearth of knowledge regarding the status of infralesional lower motor neurons (LMNs) in individuals with traumatic cervical spinal cord injury (SCI), yet there is a growing need to understand how the spinal lesion impacts LMNs caudal to the lesion epicenter, especially in the context of nerve transfer surgery to restore several key upper limb functions. Our objective was to determine the frequency of pathological spontaneous activity (PSA) at, and below, the level of spinal injury, to gain an understanding of LMN health below the spinal lesion. METHODS: Ninety-one limbs in 57 individuals (53 males, mean age = 44.4 ± 16.9 years, mean duration from injury = 3.4 ± 1.4 months, 32 with motor complete injuries), were analyzed. Analysis was stratified by injury level as (1) C4 and above, (2) C5, and (3) C6-7. Needle electromyography was performed on representative muscles innervated by the C5-6, C6-7, C7-8, and C8-T1 nerve roots. PSA was dichotomized as present or absent. Data were pooled for the most caudal infralesional segment (C8-T1). RESULTS: A high frequency of PSA was seen in all infralesional segments. The pooled frequency of PSA for all injury levels at C8-T1 was 68.7% of the limbs tested. There was also evidence of PSA at the rostral border of the neurological level of injury, with 58.3% of C5-6 muscles in those with C5-level injuries. DISCUSSION: These data support a high prevalence of infralesional LMN abnormalities following SCI, which has implications to nerve transfer candidacy, timing of the intervention, and donor nerve options.


Assuntos
Traumatismos da Medula Espinal , Traumatismos da Coluna Vertebral , Masculino , Humanos , Adulto , Pessoa de Meia-Idade , Traumatismos da Medula Espinal/cirurgia , Traumatismos da Medula Espinal/patologia , Neurônios Motores/fisiologia , Eletromiografia , Nervos Espinhais , Medula Espinal/patologia
2.
Nature ; 456(7219): 222-5, 2008 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-19005551

RESUMO

The modern chemical industry uses heterogeneous catalysts in almost every production process. They commonly consist of nanometre-size active components (typically metals or metal oxides) dispersed on a high-surface-area solid support, with performance depending on the catalysts' nanometre-size features and on interactions involving the active components, the support and the reactant and product molecules. To gain insight into the mechanisms of heterogeneous catalysts, which could guide the design of improved or novel catalysts, it is thus necessary to have a detailed characterization of the physicochemical composition of heterogeneous catalysts in their working state at the nanometre scale. Scanning probe microscopy methods have been used to study inorganic catalyst phases at subnanometre resolution, but detailed chemical information of the materials in their working state is often difficult to obtain. By contrast, optical microspectroscopic approaches offer much flexibility for in situ chemical characterization; however, this comes at the expense of limited spatial resolution. A recent development promising high spatial resolution and chemical characterization capabilities is scanning transmission X-ray microscopy, which has been used in a proof-of-principle study to characterize a solid catalyst. Here we show that when adapting a nanoreactor specially designed for high-resolution electron microscopy, scanning transmission X-ray microscopy can be used at atmospheric pressure and up to 350 degrees C to monitor in situ phase changes in a complex iron-based Fisher-Tropsch catalyst and the nature and location of carbon species produced. We expect that our system, which is capable of operating up to 500 degrees C, will open new opportunities for nanometre-resolution imaging of a range of important chemical processes taking place on solids in gaseous or liquid environments.

3.
J Synchrotron Radiat ; 10(Pt 3): 265-8, 2003 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-12714759

RESUMO

The carbon K-edge near-edge X-ray absorption spectra (NEXAFS) of oriented single crystals of N,N"-ethylenebis(N'-2-methylphenyl)urea have been recorded using scanning transmission X-ray microscopy (STXM). The single-crystal structure has been determined by X-ray crystallography. A strong polarization dependence (linear dichroism) has been observed and interpreted with the aid of the single-crystal structure and crystal alignment. These results demonstrate the ability of STXM to determine molecular orientation on a submicrometre spatial scale.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...